Exploiting multi-core systems for parallel network simulation
نویسنده
چکیده
Discrete event simulation constitutes a fundamental methodology in the design, development, and evaluation process of communication systems. Despite their abstract nature, simulation models often exhibit considerable computational complexity, resulting in extensive simulation runtimes. To counteract the runtime demand of complex simulation models, parallel discrete event simulation distributes the workload of a simulation model across multiple processing units. Traditionally, parallel discrete event simulation focused on investigating large scale system models utilizing distributed computing clusters. In the last decade, however, two developments have fundamentally changed the established state-of-the-art in parallel discrete event simulation. First, multi-core systems have become the de facto standard hardware platform for desktop and server computers. In contrast to distributed computing clusters, multi-core systems provide different hardware characteristics, notably shared memory. Second, the focus of interest in the research community shifted from wired to wireless communication systems. Contrary to wired networks the simulated network entities are tightly coupled due to detailed modeling of physical layer and wireless channel effects, thereby hindering efficient parallelization. This thesis addresses the challenges resulting from these two developments by designing algorithms and tools to enable and support efficient parallel simulation of tightly coupled systems on multi-core systems. In particular, we make four distinct contributions: Our first contribution is parallel expanded event simulation, a modeling paradigm extending discrete events with durations that span a period in simulated time. The resulting expanded events form the basis for a conservative synchronization scheme that considers overlapping expanded events eligible for parallel processing. We furthermore put these concepts into practice by implementing Horizon, a parallel expanded event simulation framework specifically tailored to multi-core systems. The durations carried by expanded events provide a deeper insight into event dependencies. Yet, they typically do represent the true dependencies among events. Hence, our second contribution, probabilistic synchronization, exploits the globally shared memory space of multi-core systems to observe the behavior of a simulation at runtime and learn accurate dependencies between events. Three different heuristics subsequently exploit the dependency information to guide speculative event execution. While the previous two contributions focus on speeding up individual simulation runs, our third contribution exploits the massively parallel processing power of GPUs to reduce the runtime demand of entire parameter studies. To this end, we develop a multi-level parallelism scheme that bridges the gap between the fundamentally different processing paradigms underlying expanded event simulation and GPUs. Finally, the performance of any parallelization scheme heavily depends on the structure of a given simulation model. Hence, we specify a performance analysis methodology that enables model developers to identify and eliminate performance bottlenecks in simulation models. In combination, our four contributions provide the means for efficient parallel simulation on multi-core systems.
منابع مشابه
Exploiting MISD Performance Opportunities in Multi-core Systems
A number of important system services, particularly network system services, need strong scaling on multi-core systems, where a fixed workload is executed more quickly with increased core counts. Unfortunately, modern multiple-instruction/multipledata (MIMD) approaches to multi-core OS design cannot exploit the fine-grained parallelism needed to provide such scaling. In this paper, we propose a...
متن کاملHorizon - Exploiting timing information for parallel network simulation
Network simulation faces an increasing demand for highly detailed simulation models which in turn require efficient handling of their inherent computational complexity. This demand for detailed models includes both accurate estimations of processing time and in-depth modeling of wireless technologies. For instance, one might want to investigate if a particular device can incorporate a computati...
متن کاملEfficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems
Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملHOMPI: A Hybrid Programming Framework for Expressing and Deploying Task-Based Parallelism
This paper presents hompi, a framework for programming and executing task-based parallel applications on clusters of multiprocessors and multi-cores, while providing interoperability with existing programming systems such as mpi and OpenMP. hompi facilitates expressing irregular and adaptive master-worker and divide-and-conquer applications avoiding explicit mpi calls. It also allows hybrid sha...
متن کامل